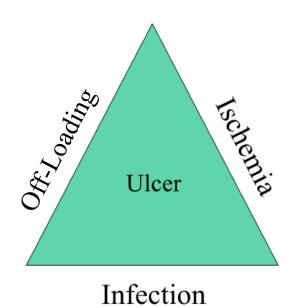
Debridement, Drainage and Biofilm Management

Klaus Kirketerp-Møller

Consultant, Phd student

Copenhagen Wound Healing Center


Bispebjerg University Hospital

Disclosure

- For this lecture:
 - None
- In general:
 - Advisory board SoftOx, Mölnlycke, Bayer Pharma, Magle Chemoswed
 - Lecture Coloplast
 - Patent Acetic acid against Biofilm

Treatment Protocol

Infection

• In terms of:

• Impact of microorganisms

Ubi Pus, Ibi Evacua

- where [there is] pus, there evacuate [it]
- But
- Ubi pus, necrosis est (Google translate)
- where [there is] pus, there is necrosis

Definition

- Debridement
 - Removal of dead, damaged or infected tissue.

Wikipedia

No drainage without debridement

Debridement, Drainage and Biofilm Management

Klaus Kirketerp-Møller

Consultant, Phd student

Copenhagen Wound Healing Center

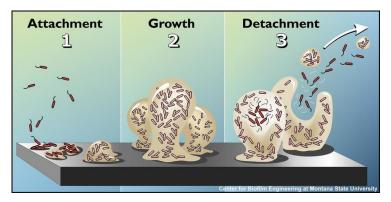
Bispebjerg University Hospital

Debridement and Biofilm Management

Klaus Kirketerp-Møller

Consultant, Phd student

Copenhagen Wound Healing Center


Bispebjerg University Hospital

Definition

• Biofilm

DEFINITION

Biofilms are defined as matrix-enclosed bacterial populations adherent to each other and/or to surfaces or interfaces. This definition includes microbial aggregates and floccules and also adherent populations within the pore spaces of porous media.

Costerton and Lewandowski, 1995

Biofilm in Diabetic Foot Ulcers

IWJ International Wound Journal

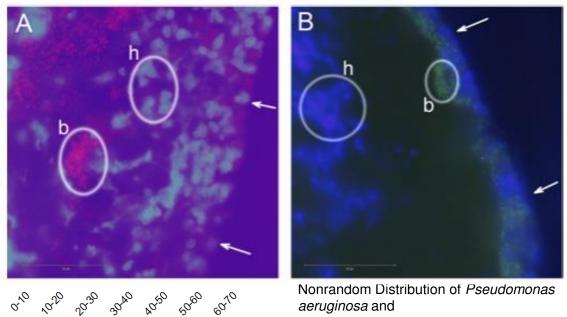
International Wound Journal ISSN 1742-4801

ORIGINAL ARTICLE

Microscopy visualisation confirms multi-species biofilms are ubiquitous in diabetic foot ulcers

Khalid Johani^{1,2}, Matthew Malone^{3,4,6}, Slade Jensen^{3,7}, Iain Gosbell^{3,7}, Hugh Dickson^{4,5,8}, Honhua Hu¹ & Karen Vickery¹

2017

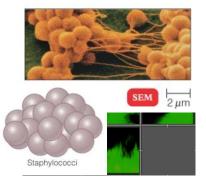


Controversies

- Normaly bacterial biofilm is associated with surfaces
 - Implants
 - Katheters
- This has led to the assumption that bacterial biofilm is on the surface of chronic wounds

Distance from Surface

Distance to wound surface (µm)



Staphylococcus aureus in Chronic Wounds Mustafa Fazli et al. JCM dec. 2009

Biofilm Size

• No Mushroom structure

Høibye et al. ESCMID* guideline for the diagnosis and treatment of biofilm infections 2014

Biofilm demonstrated in	Visualization method	Approximate diameter	Reference
Lung infections (CF)	Light microscopy	~4-8 um	[197]
	Light microscopy	~5–100 µm	[198]
	FISH	~5-100 µm	[8]
	FISH	~5-50 µm	[199]
Chronic wounds	FISH	~5-200 µm	[40]
	FISH	~5-100 µm	[9]
	Light and electron	~35-55 µm	[39]
	microscopy		[27]
Soft tissue fillers	FISH	~5-25 µm	[20]
Otitis media	FISH	~15-25 µm	[200]
	FISH	~10-80 µm	2011
	FISH	~4-40 µm	2021
Implant-associated	Electron microscopy	~500 µm	2031
	FISH	~50 µm	2041
	Electron microscopy	~5-15 µm	2051
	FISH	~5-30 µm	12061
Catheter- and	Electron microscopy	~5-1000 µm	12071
shunt-associated	Electron microscopy	~20-500 µm	[208]
	Fluorescence	~20-1200 µm	[209]
	FISH and electron microscopy	>1000 µm	[210]
Chronic osteomyelitis	Electron microscopy	~25 µm	[211]
	Electron microscopy	~25 µm	[212]
	Light and electron microscopy	~5-50 µm	[213]
Chronic	Electron microscopy	~5-30 µm	[214]
rhinosinusitis	Fluorescence microscopy	~5–20 µm	[215]
Contact lenses	Electron microscopy	~50-100 µm	[216]

Abbreviations: CF, cystic fibrosis; FISH, fluorescence in situ hybridization. ^aThe biofilm aggregate size was estimated by measuring the longest diameter or length directly on the micrograph images in the source articles. (adapted from ref [10])

Tolerance and Resistance

Tolerance

- Phenotype
 - Dormant cells
- Quorum Sensing
 - Biofilm mode
- Diffusion

Resistance

•Genetic transfered mechanism

- Beta-lactamases
 - ESBL
 - Plasmid mediated
- MRSA
 - Change in Penicillin binding proteins
- Other AB
 - Change in target enzymes or receptors

100-1000 more tolerant in biofilm!

REGION

Elimination is the New Black

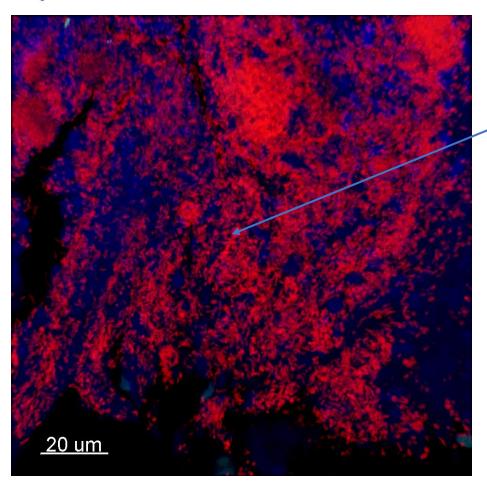
• MBIC

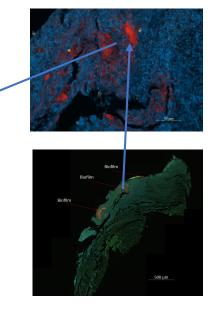
- Minimal Biofilm Inhibitory Concentration
 - MBEC
- Minimal Biofilm Elimination
 Concentration

But does it make sense?

Bacteria Exists in Biofilm!

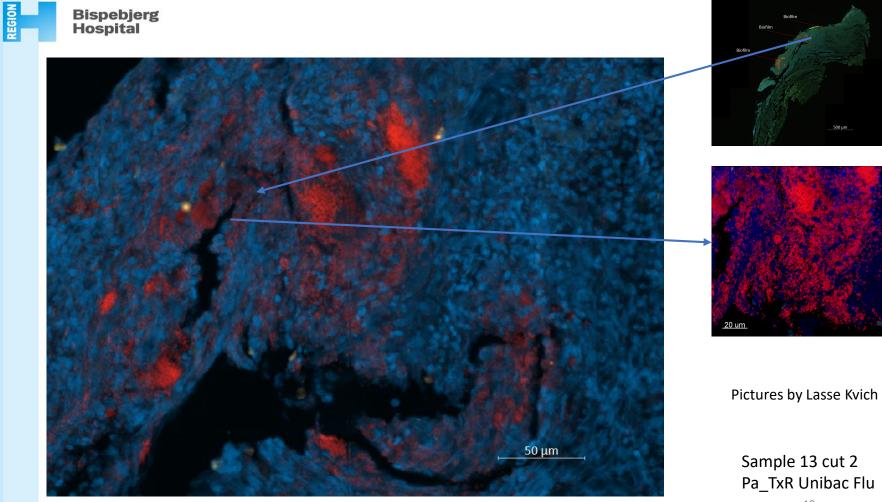
- Bacteria in biofilm are tolerant to antibiotics
- Bacteria in biofilm can interfere with the immune system
- Bacterial biofilms are abundant




Yet, Where are the Biofilms?

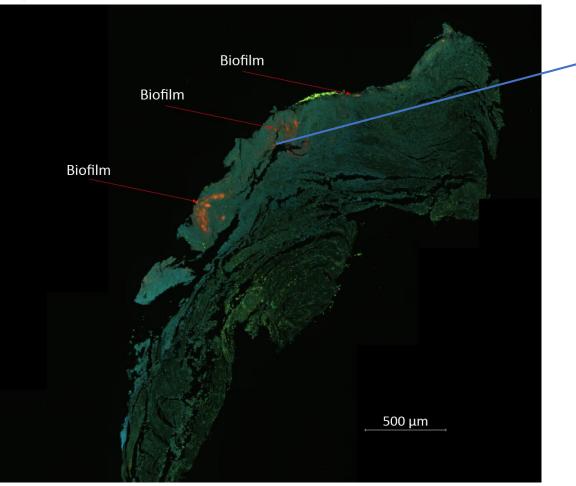
23-05-2019

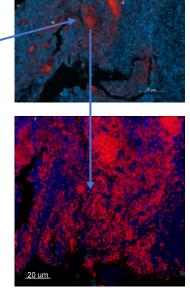
Bispebjerg Hospital



Pictures by Lasse Kvich

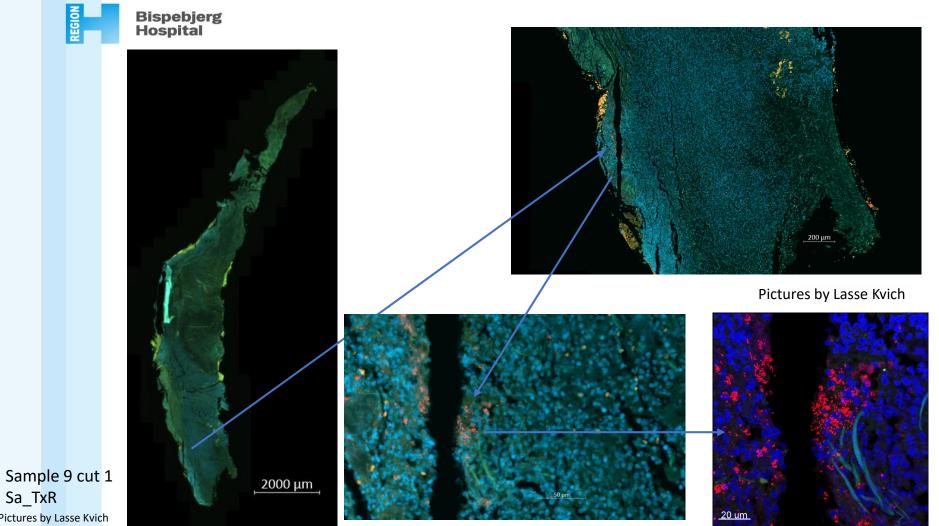
Sample 13 cut 2 Pa_TxR Unibac Flu


18



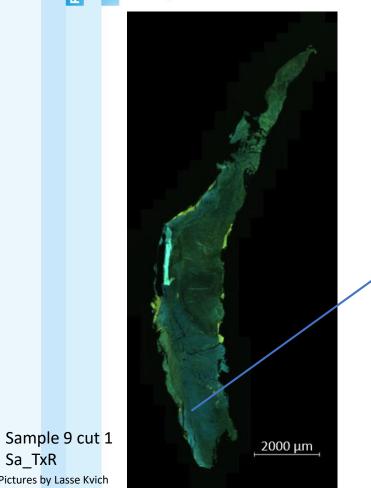
23-05-2019

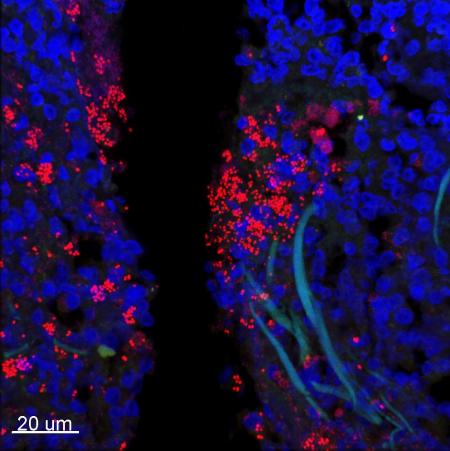
REGION


Bispebjerg Hospital

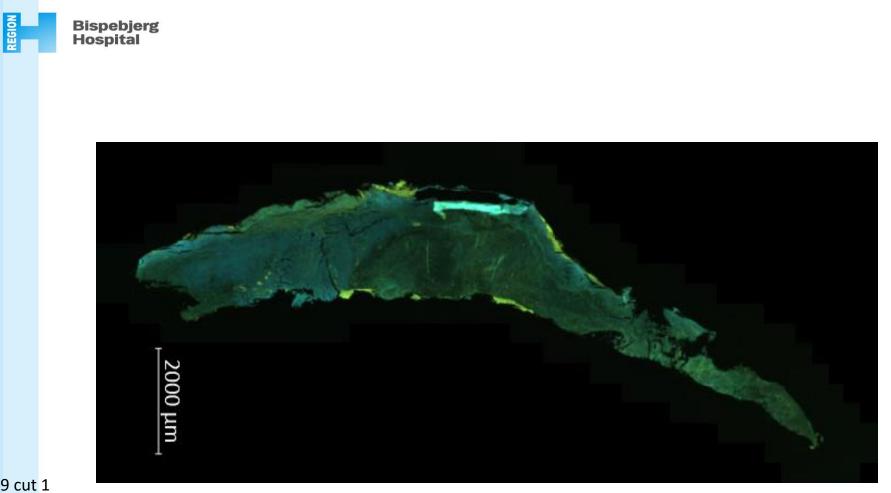
Pictures by Lasse Kvich

Sample 13 cut 2 Pa_TxR Unibac Flu

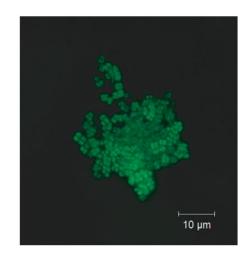

Sa_TxR Pictures by Lasse Kvich



Sa_TxR


Pictures by Lasse Kvich

Bispebjerg Hospital


22

Sample 9 cut 1 Sa_TxR Pictures by Lasse Kvich REGION

Vicious Biofilm?

- The biofilm (the extra-cellular matrix) is not harmful.
- The bacteria alter behaviour (pheno-type)
- The bacteria alter virulence
 - Controled by
 - Quorum-sensing
 - Nutrients
 - Oxygen
 - Environment
 - Host
 - Other microorganisms

Window of Opportunity Dowd & Wolcott

- Disturbance of the biofilm forces the bacteria to re-adapt
- Wake-up the dormant cells

REGION

Bispebierg

- Causes disturbance in the Quorum Sensing System
- Makes bacteria susceptible to antibiotics
- Makes bacteria accessible to immune defense system

Window of Opportunity Dowd & Wolcott

- Disturbance of the biofilm forces the bacteria to re-adapt
- Wakes-up the dormant cells
- Causes disturbance in the Qurom Sensing System
- Makes bacteria susceptible to antibiotis
- Makes bacteria accessible to immune defense system
- In theory!

Bispebjerg Hospital

REGION

Tools?

- Surgery
- Surgery
- SURGERY
- Surgery
- Surgery
- Repeted surgery

Antibiotics?

Debridement and Biofilm Management

Klaus Kirketerp-Møller

Consultant, Phd student

Copenhagen Wound Healing Center

Bispebjerg University Hospital

REGION

Biofilm Management

Klaus Kirketerp-Møller

Consultant, Phd student

Copenhagen Wound Healing Center

Bispebjerg University Hospital

Take Home Message

- How should we treat the biofilm?
 - Off-loading
 - Debridement
 - Surgery
 - Surgery should augment off-loading
 - Change of dressing
 - Antibiotics?
 - Antiseptics? Change the environment

Thank you for your attention

kkm@dadInet.dk